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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

The lung is a highly elastic organ. During the respiratory cycle, lung experi-

ences expansion and contraction. Pulmonary diseases, such as fibrosis and emphy-

sema, or injury conditions can cause lung material properties to change and thus its

mechanics change. Therefore, understanding and modeling lung mechanics is impor-

tant to help detect lung diseases or injuries.

Various attempts have been made to study lung function non-invasively. Xenon-

enhanced CT (Xe-CT) has been used to measure regional ventilation by observing

the Xenon gas wash-in and wash-out rate on serial CT images [18, 25, 2]. But Xenon

gas has an anesthetic effect, and Xe-CT imaging is expensive and requires special

equipment. In addition, the axial coverage of Xe-CT is limited to a few slices at a

time due to its high temporal resolution requirement. Some researchers used non-

rigid registration to track lung motion, and studied the relationship between regional

lung expansion and ventilation. Guerrero et al. used optical-flow registration to cal-

culate dynamic regional ventilation images from 4D CT images [13, 12]. They showed

a close correlation between calculated global lung ventilation and directly measured

total lung volume change, but they can not make comparison between regional lung

ventilation and local lung expansion due to the limitation of their experiment meth-

ods. In addition, they did not show the accuracy of the registration results on the
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experimented data. Sundaram et al. used non-linear registration of serial magnetic

resonance (MR) images to quantify lung kinematics [23, 24], but lung MRI requires

special equipment for gas hyperpolaring during imaging process, and it has low spa-

tial resolution. Also, they encountered the challenge of the inability to track the same

point in successive images consistently. Christensen et al. [10, 4] used inverse con-

sistent image registration to register consecutive CT image volumes collected from a

multislice CT scanner over multiple breathing periods, and estimate the local tissue

expansion and contraction during the respiratory cycle. They showed that the mea-

surements resulted from registration correlated well with spirometry data. However,

it was not possible to make comparison between the registration-based estimates and

regional tissue ventilation using that method. Thus, it is interesting to model the

lung expansion and compare the local lung tissue expansion measures with regional

ventilation. Also, finding a method to estimate the local lung deformation measures

accurately and efficiently at lower cost is useful for practical use.

The goal of this work is to use deformable image registration on multiple

respiratory-gated CT images of the lung acquired at different levels of inflation to

estimate the local measures of lung tissue expansion. Comparisons between the re-

gional lung expansion estimates and Xe-CT derived measures of regional ventilation

were made to validate the measures derived from registration, and to find the suitable

pressure change to quantify the lung expansion characteristics.
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1.2 Outline

Chapter 2 discusses the data, data acquisition, and methods used in this work.

This chapter also describes the image registration, the inverse consistent image reg-

istration algorithm, and the procedure for applying the registration algorithm on the

data sets. The methods used for assessing image registration accuracy, calculating

local lung tissue expansion and strain measures are described next. The chapter con-

cludes with a brief description of the Xenon CT specific ventilation analysis, and the

method used to compare the measures estimated from registration to Xe-CT derived

regional ventilation measure.

Chapter 3 presents the registration results. This chapter discusses the registra-

tion accuracy, presents the local tissue expansion and strain estimates resulted from

registration, compares registration derived measures with regional ventilation from

Xe-CT analysis, and shows experiment results using mutual information registration.

Chapter 4 discusses some problems encountered and explores future extensions.

And Chapter 5 summarizes this thesis work.
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CHAPTER 2

METHODS

2.1 Data Acquisition

Six adult sheep were used for this work. The image data were acquired using

a Siemens Sensation 64 multi-detector CT scanner (MDCT) (Siemens Medical Solu-

tions; Erlangen, Germany) with the sheep in the supine position. The animals were

anesthetized and mechanically ventilated during the experiments.

2.1.1 Respiratory-Gated CT Data Acquisition

Volumetric CT scans covering the thorax were acquired at six different levels

of positive end expiratory pressure (PEEP): 0, 5, 10, 15, 20, and 25 cm H2O (pitch

1, slice collimation 0.6 mm, rotation time 0.5 sec, slice thickness 0.75 mm, slice

separation 0.5 mm, 120kVp, 100 mAs, Kernel B30f). They are denoted as the P0,

P5, P10, P15, P20, and P25 images. The data sets are in rigid alignment after

acquisition since the sheep were anesthetized and all of the images were acquired

without moving the sheep between scans [20].

All CT data were stored in 16-bit AnalyzeTM (Mayo Clinic, Rochester, MN)

format. The image dimension of the transverse view is 512×512, and the z-dimension

varies from 587 to 729. The first two sheep AS60133 and AS60150 had voxel size of

0.51 × 0.51 × 0.5 mm3 while the other four sheep AS70077, AS70078, AS70079 and

AS70080 had voxel size of 0.55 × 0.55 × 0.5 mm3.
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2.1.2 Xenon CT Data Acquisition

For Xe-CT studies, twelve contiguous axial locations were selected from the

the whole lung volumetric scan at the end expiratory point during the respiratory

cycle. The images were gathered as the sheep breath six to eight breaths of room air,

then followed approximately 40 breaths of pure xenon gas (wash-in phase) [20].

The Xe-CT were acquired at pressure 0 cm H2O airway pressure (P0) for all

six sheep and 10 cm H2O airway pressure (P10) for the last four sheep, and they only

cover a limited field of interest. The Xe-CT image dimension for the first two sheep

is 512 × 512 × 6 with voxel size 0.51 × 0.51 × 3 mm3. For the remaining four sheep

the Xe-CT image dimension is 512× 512× 12 with voxel size 0.55× 0.55× 2.4 mm3.

2.2 Image Registration

2.2.1 Introduction to Image Registration

Image registration has many uses in medical fields such as multi-modality fu-

sion, image segmentation, deformable atlas registration, and measuring growth and

modeling motion. The fundamental assumption in each of these applications is that

image registration can be used to define a meaningful correspondence mapping be-

tween anatomical images collected from imaging devices such as CT, MRI, etc.

Given two images called template T and target S, a registration procedure to

register T to S is finding the optimal correspondence mapping or transformation which

deforms T to S. There are different criteria for image registration: minimizing the

relative overlap difference, maximizing the mutual information between two images,

minimizing the distance between corresponding points of interest called landmarks,
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etc. All the criteria are designed to find the best correspondence mapping to match

image T to S.

2.2.2 Inverse Consistent Image Registration

A meaningful map between two anatomical images should be one-to-one, i.e.,

each point in image T is mapped to only one point in image S and vice versa. However,

the forward mapping from T to S and the reverse mapping from S to T resulted from

many unidirectional image registration techniques are not inverses of each other.

This inconsistency is resulted from the inability to uniquely describe correspondences

between two images during the registration process. Figure 2.1 illustrates the mapping

ambiguity problem and the inverse consistency error involved in the image registration

algorithm.

Figure 2.1: An illustration of the mapping ambiguity problem and the inverse con-
sistency error involved in the image registration of two images.

Christensen et al. [6, 5, 7, 16] have introduced a method for image registration
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that jointly estimates the forward and reverse transformations between two images

while minimizing the inverse consistency error. For a particular registration algo-

rithm, the joint estimation of a consistent set of forward and reverse transformations

gives better registration results compared with estimating the two transformations

independently.

The image registration algorithm is formulated on the continuum and is dis-

cretized for implementation. Suppose T and S represent the template and the target

images which are three-dimensional image volumes of voxels dimension N1×N2×N3.

Let Ωd = {(n1, n2, n3)|0 ≤ n1 < N1; 0 ≤ n2 < N2; 0 ≤ n3 < N3; and n1, n2, n3 ∈ Z}

be the discrete voxel lattice coordinates and let Ω = [0, 1)3 be the corresponding

continuous domain. The continuous domain and the discrete domain are related in

the normal sampling sense Ωd[n] = Ω(n/N), where n/N is defined as the 3× 1 vector

[n1/N1, n2/N2, n3/N3]
T . The continuous images are generated from discrete images

using trilinear interpolation.

Let h and g denote the forward transformation and reverse transformations

that map the image coordinate Ω to itself. Assume that h(x) = x + u(x), h−1(x) =

x + ũ(x), g(x) = x + w(x) and g−1(x) = x + w̃(x) where h(h−1(x)) = x and

g(g−1(x)) = x. Here u, w, ũ, and w̃ are called displacement fields since they define the

transformation in terms of a displacement from a location x. All the transformations

and displacements are 3 × 1 vector-valued functions defined on the Ω.

There are many metrics defining the distance between two images. Minimizing

the mean squared intensity difference (MSQ) is an easy and effect way to drive the
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registration. The transformations h and g are jointly estimated by minimizing the

cost function

C = σ

∫

Ω

|T (h(x)) − S(x)|2 + |S(g(x)) − T (x)|2dx

+ χ

∫

Ω

||h(x) − g−1(x)||2 + ||g(x) − h−1(x)||2dx

+ ρ

∫

Ω

||Lu(x)||2dx +

∫

Ω

||Lw(x)||2dx

(2.1)

where the constants σ, χ and ρ are used to balance the constraints. The first integral

of the cost function defines the squared intensity error (shape differences) between

the deformed image T ◦ h and image S, and the differences between the deformed

image S ◦ g and image T . The second integral couples the estimation of h and

g together and penalizes transformations that are not inverses of each other, i.e.,

minimizing the inverse consistency error shown in Figure 2.1. The third integral

is a linear elastic constraint [9, 8] to ensure that the transformations maintain the

topology of the images T and S. This term is used to regularize the forward and

reverse displacement fields so that they are smooth and continuous by penalizing

large derivatives of the displacement fields. The linear elasticity operator L has the

form Lu(x) = −α∇2u(x) − β∇(∇ · u(x)) + γu(x) where ∇ =
[

∂
∂x1

, ∂
∂x2

, ∂
∂x3

]

and

∇2 = ∇ · ∇ =
[

∂2

∂x2

1

+ ∂2

∂x2

2

+ ∂2

∂x2

3

]

in 3D.

A 3D Fourier series representation [1] is used to parameterize the forward

and reverse transformations. Christensen and Johnson [6, 15] describe the Fourier

series parameterization used in the consistent registration algorithm in detail. Let

k = [k1, k2, k3] and n = [n1, n2, n3]. The discretized displacement fields are defined as
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ud[n] =
∑

k∈Ωd

µ[k]ej<n, θ[k]> (2.2)

and

wd[n] =
∑

k∈Ωd

η[k]ej<n, θ[k]> (2.3)

for n ∈ Ωd. The basis coefficients are defined as

µ[k] =
1

N1N2N3

∑

n∈Ωd

ud[n]e−j<n, θ[k]> (2.4)

and

η[k] =
1

N1N2N3

∑

n∈Ωd

wd[n]e−j<n, θ[k]> (2.5)

for k ∈ Ωd. The reason to use the Fourier series parameterization is that it can

simplify the linear elasticity constraint given in Equation 2.1 effectively. Substituting

Equations 2.2 and 2.3 into the linear elastic constraint in Equation 2.1, and discretiz-

ing the continuous partial derivatives of of L, we get a much simpler form of the

regularization term in Fourier field

CREG =
∑

k∈Ωd

µ†[k]D2[k]µ[k] + η†[k]D2[k]η[k] (2.6)

where † is the complex conjugate transpose. D[k] is a real-valued, 3 × 3 symmetric

matrix with elements
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[D[k]]rs =







































































2α(N2
1 (1 − cos(θ1[k]))

+ N2
2 (1 − cos(θ2[k]))

+ N2
3 (1 − cos(θ3[k])))

+ 2βN2
r (1 − cos(θr[k])) + γ

r = s,

βNrNssin(θr[k])sin(θs[k]) r 6= s.

(2.7)

In order to implement this algorithm, the cost function given in Equation 2.1

can be discretized as

C(µ, η) =σ
1

N1N2N3

∑

n∈Ωd

|Td[Nhd[n]] − Sd[n]|2 + |Sd[Ngd[n]] − Td[n]|2

+ χ
1

N1N2N3

∑

n∈Ωd

||ud[n, r] − w̃d[n, r]||2 + ||wd[n, r] − ũd[n, r]||2

+ ρ
∑

k∈Ωd[r]

µ†[k]D2[k]µ[k] + η†[k]D2[k]η[k]

(2.8)

Since the Fourier-series parameterization of the transformation is used in this

registration algorithm implementation, there exists a fundamental problem of cyclic

boundary conditions. However, when registering full lung volumes, this is not an

issue because there is enough information to reduce the effects of edge artifacts.

In this project, the CT images were acquired at different pressures. At higher

pressures, more air moves in the lung, thus the intensity range in the lung region

is changing between different images. Therefore, intensity difference between the

deformed image and target image always exists even in a perfect registration case.

The registration problem under this circumstance is similar to the multi-modality
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image registration, where mutual information (MI) is widely used as the similarity

measure.

Viola and Wells [26, 14] and Collignon and Maes [11, 17, 19] have shown that

mutual information works effectively especially in registering images from different

modalities. When applied in image registration field, mutual information expresses

the amount of information that one image A contains about the other one B

I(A,B) = H(A) + H(B) − H(A,B) (2.9)

where H(A), H(B) denote the marginal entropies of A and B respectively, while

H(A,B) denotes the joint entropy between A and B. The mutual information is

maximized when the images are aligned.

Maes [19] introduced the method to measure mutual information between two

images. Let NT and NS represent the numbers of uniform bins along the respective

dimension of the joint histogram constructed by the template image Td and Sd, and

they are indexed by i ∈ [0, NT ) and j ∈ [0, NS). In order to reduce the quantization

effects resulted by discretization and interpolation, the continuous estimates of the

image distributions is generated using Parzen window. A cubic B-spline kernel β(3) is

used on the templated image to ensure smoothness and stable derivative calculations.

However, since the target image does not contribute to the metric derivatives, simple

box kernel β(0) is used on the target image. Then the smoothed joint histogram of
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the deformed image Td ◦ hd and target image Sd is

p(i, j) = α
∑

n∈Ωd

β(3)

(

i −
Td[Nhd[n]] − T 0

d

∆bT

)

× β(0)

(

j −
Sd[n] − S0

d

∆bS

)

(2.10)

where α is a normalization factor to ensure that
∑

p(i, j) = 1. Td[Nhd[n]] and

Sd[n] represent the interpolated deformed images and the target images. They are

normalized by he minimum intensity value, T 0
d or S0

d , and the bin size, ∆bT or ∆bS,

respectively. This aims to fit the intensity value into specified number of bins, NT

and NS, in the joint intensity distribution.

The marginal probability for the deformed image and target image can be

directly calculated from their joint probability

pTd◦hd
(i) =

∑

j

p(i, j),

pSd
(j) =

∑

i

p(i, j). (2.11)

In this program, maximizing the mutual information is converting to minimiz-

ing the negative mutual information

−I(Td, Sd) = −
∑

i

∑

j

p(i, j) log
p(i, j)

pTd◦hd
(i)pSd

(j)
. (2.12)

Finally, the mutual information algorithm can be expressed as minimizing the
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cost function

C(µ, η) = − λ [I(Td ◦ hd, Sd) + I(Sd ◦ gd, Td)]

+ χ
1

N1N2N3

∑

n∈Ωd

||ud[n, r] − w̃d[n, r]||2 + ||wd[n, r] − ũd[n, r]||2

+ ρ
∑

k∈Ωd[r]

µ†[k]D2[k]µ[k] + η†[k]D2[k]η[k]

(2.13)

where the constants λ, χ and ρ are used to balance the constraints.

2.2.3 Registration Procedure

Before registration, the CT data was converted from 16-bit data to 8-bit un-

signed character data using an intensity window that mapped the range from [-1024,

0] HU to [0, 255]. HU values below -1024 are set to 0 and those above 0 are set to 255.

Converting the data type enables the algorithm to consume less memory and require

less computation time. A more important reason to perform this grayscale mapping

is that it highlights the intensity differences between the lung tissue and the sur-

rounding chest wall, and the differences between the lung tissue and the airway walls

and blood vessels. Figure 2.2 shows an example coronal slice before and after this

intensity transformation. After this grayscale mapping, most intensity information is

contained in the lung region, and thus no segmentation is needed before registration.

The CT images were down-sampled along each dimension using trilinear in-

terpolation. After down-sampling, the voxel size is 1.02 × 1.02 × 1 mm3 for the first

two sheep and 1.10 × 1.10 × 1 mm3 for the other four sheep. The voxel size for

each sheep data is approximately isotropic. The down-sampling processing aims to
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(a) (b)

Figure 2.2: The intensity transformation maps the CT values to 8-bit unsigned charac-
ter data before registration. (a) Original CT data. (b) Data after intensity mapping.

conserve memory required to run the registration software and speed up the process.

No rigid registration is required prior to deformable registration since the

animals were not moved between scans and thus were already in rigid alignment,

as described in 2.1.1.

After the preprocessing, the volumetric images were registered pairwise ac-

cording to airway pressure. There are three methods of choosing images to make up

the registration pair. In the first method, the pressure change was fixed at 5 cm H2O.

This method generates 5 pairs of registration: P0 to P5, P5 to P10, P10 to P15, P15

to P20, and P20 to P25. In the second method, increasing pressure changes from

P0 were considered, and another 5 pairs of registration are formed: P0 to P5, P0 to

P10, P0 to P15, P0 to P20, and P0 to P25. In the third method, increasing pressure

changes from P10 were considered. This method produces 3 pairs of registration: P10

to P15, P10 to P20, and P10 to P25.
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In the registrations, the weighting constants in the cost function given in Equa-

tion 2.8 were set as σ = 1, χ = 600, and ρ = 0.00125. This is the empirical setting

for CT-to-CT registration using the inverse consistent image registration algorithm

[6]. For mutual information registration, 50 × 50 histogram bins were used, and the

weighting constants in the cost function given in Equation 2.13 were set as λ = 0.1,

χ = 600, and ρ = 0.00125.

A spatial and frequency multiresolution procedure was used in the registra-

tion in order to improve speed, accuracy and robustness. The basic idea is that

registration is first performed at a coarse scale and the transformation estimated at

the coarse scale is used to initialize registration at the next finer scale. This process

is repeated until it reaches the finest scale. This coarse-to-fine scheme matches the

the global structures before local in order to eliminate local optima at coarser scales.

The multiresolution strategy used in the experiments proceeds from low to high res-

olution starting at one-eighth the spatial resolution and increases by a factor of two

until the full resolution is reached. The multiresolution schemes for minimizing the

cost function given in Equation 2.8 (MSQ registration) and for minimizing the cost

function given in Equation 2.13 (MI registration) are shown in Table 2.1.

Note that for most cases, the mean squared intensity difference is used as

similarity measure to drive the registration. The results obtained using mutual in-

formation as the similarity measure is mentioned and discussed later. If there is no

mention about mutual information, the registration is driven by the mean squared

intensity difference.
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Table 2.1: Multiresolution schemes for MSQ and MI registration

Resolution
MSQ MI

Step size Iterations Step size Iterations
0.125 0.0001 500 0.00001 500
0.25 0.0001 500 0.00001 500
0.5 0.0001 100 0.000001 100
1 0.0001 20 0.000001 50

After completing the registration process, the voxel-by-voxel displacement

fields between each image pair were generated and used to track the local lung tissue

motion during the respiratory cycle.

2.3 Assessment of Registration Accuracy

2.3.1 Tracking landmarks movement

Anatomic landmarks were manually selected and tracked in all six images for

five sheep in order to assess the registration accuracy. The number of landmarks

ranged from 9 to 15, and were different for each sheep. These landmarks were cho-

sen as airway branchpoints. Using the displacement fields determined by the image

registration for each image pair, the landmarks in the template image were mapped

to the target image. Then the estimated landmark position was compared to the

actual landmark position in the target image, and the landmark position error was

calculated, as shown in Figure 2.3.

2.3.2 Transitivity Error Analysis

As discussed in 2.2.2, a meaningful registration should have zero or nearly

zero inverse consistency error. In this project, since there are many registration
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Figure 2.3: Illustration of the landmark error. The green landmark in template
image should correspond to the green point in target image. Registration maps the
green landmark in template image to the position marked as red in target image.
The distance between the predicted position (red point) and the true position (green
point) in target image is defined as landmark error.

pairs, analysis of the transitivity error is useful to check the invertibility property

and evaluate the consistency of a group of transformations. The transitivity of a

set of transformations is defined by measuring the difference between the identity

mapping and the composition of those transformations, as described in Christensen

and Johnson [7] and the Non-Rigid Image Registration Evaluation Project (NIREP)

[3].

The transitivity property is shown in Figure 2.4. Suppose the points x, y,

z are the same landmark appears in three different images A, B, C, respectively.

Assume that the set of transformations H = {hAB, hBA, hBC , hCB, hAC , hCA} satisfy
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the invertibility property

y = hBA(x), z = hCB(y), x = hAC(z). (2.14)

Performing substitution in the three equations, we achieve the result

x = hAC(hCB(hBA(x))). (2.15)

This relationship is called transitivity property. From above deductions we can get

the conclusion that transformations that are inconsistent are even more difficult to

satisfy the transitivity relationship.

Figure 2.4: Illustration of the transitivity property of a group of transformations.

The average transitivity error of a group of transformations is defined as

ETC(hAB, hBC , hCA,M) =
1

M

∫

M

||hAB(hBC(hCA(x))) − x||dx (2.16)
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where M denotes the region of interest (ROI). For a set of transformations, lower

average transitivity error indicates more accurate and consistent registrations in gen-

eral.

In this project two groups of transformations were formed in order to do the

transitivity error analysis. The first group couples the transformations from P0 to

P5, P5 to P10, and P10 to P0, while the second group couples the transformations

from P10 to P15, P15 to P20, P20 to P25, and P25 to P0. Transitivity error for

each group was calculated by estimating the average difference between the identity

mapping and the composition of the transformations in the group.

2.4 Estimates of Local Lung Expansion

based on Registration

2.4.1 Specific Volume Change based on Jacobian

The Jacobian is a measurement to estimate the pointwise expansion and con-

traction during the deformation, and is used to measure the local lung volume change.

Assume we have an image I1 at lower pressure and another image I2 at higher pres-

sure. Let h(x, y, z) = [hx(x, y, z), hy(x, y, z), hz(x, y, z)]T be the transformation and

u(x, y, z) = [ux(x, y, z), uy(x, y, z), uz(x, y, z)]T be the corresponding displacement

deforms the template image I1 to the target image I2. The relationship between

h(x, y, z) and u(x, y, z) is shown in 2.2.2: h(x, y, z) = (x, y, z) + u(x, y, z). Then, a

voxel at location (x, y, z) in image I1 is displaced by u(x, y, z) to map to its corre-

spondence in image I2. The Jacobian J(x, y, z) of the transformation is defined as
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J(x, y, z) =
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. (2.17)

In this way, the Jacobian at each voxel location can be calculated to estimate the

local lung tissue deformation. In a Eulerian reference frame, a Jacobian value of one

corresponds to zero expansion or contraction, a value greater than one corresponds

to contraction and a value less than one corresponds expansion. A negative Jacobian

value is undesired because it implies that the transformation is folded and thus the

topology is destroyed when transforming images.

For a voxel at location (x, y, z) in image I1, the Jacobian J(x, y, z) in La-

grangian reference frame expresses the ratio between two volume states V1 and V2 for

the volume element in I1 and I2

J(x, y, z) =
V2

V1

=
V1 + △V

V1

, (2.18)

where △V = V2 − V1 is the local volume change due to inspiration. Specific volume
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change is solved by rearranging Equation 2.18 [20]

△V

V1

= J(x, y, z) − 1. (2.19)

2.4.2 Specific Volume Change based on

CT Intensity Change

The lung density is represented by CT grayscale in Hounsfield Units (HU),

which is defined such that the HU of water and air are 0 and -1000, respectively. Since

the lung density decreased as it inflates with air, changes in the lung CT density during

inflation can also be used to quantify regional mechanical properties. Therefore, given

CT images of a lung region at two different pressures, it is possible to calculate its

density change and estimate the regional volume change based on registration results.

Simon [22] reported a relationship between registered CT regional values and

the regional volume change. After registration, the mapping of each voxel between I1

and I2 allows us to identify the corresponding tissue elements. 3 mm×3 mm×3 mm

local averaging of the CT HU for both I1 and I2 is preformed since the mapping

may contain some error [13]. Let HU1 and HU2 be the CT grayscale for I1 and I2,

respectively. Simon’s method assumes that the fraction of air in a region is given by

Fair = −
HU

1000
. (2.20)
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Thus, the air fraction for the same region in I1 and I2 is

F1 = −
HU1

1000
, F2 = −

HU2

1000
. (2.21)

According to Simon [22],

△V

V1

=
F2 − F1

F1(1 − F2)
, (2.22)

where V1 is the original volume and △V = V2 − V1 is the local volume change due to

inspiration. Specific volume change is expressed by CT grayscale after substituting

Equation 2.21 to Equation 2.22

△V

V1

= 1000
HU2 − HU1

HU1(1 + HU2)
. (2.23)

In our study, we segmented out the lung region using AnalyzeTM software, and

applied Equation 2.23 on all the local lung tissue that contain between 40% and 90%

air to generate the ventilation parametric image representing local specific volume

change. Then a 9 mm×9 mm×9 mm spatial averaging of the ventilation parametric

images was performed in order to generate the final 3D ventilation map [13].

2.5 Strain Analysis

From the displacement fields estimated in registration process, strain can be

calculated to express the geometrical deformation caused by the action of stress in

the lung.

The linear strain along x, y, and z axes are defined as the fractional length
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change

ǫx =
∂ux

∂x
, ǫy =

∂uy

∂y
, ǫz =

∂uz

∂z
(2.24)

where u = [ux, uy, uz]
T is the 3D displacement field. Similarly the angular change at

any point between two lines crossing this point before and after deformation can be

measured as a shear strain. The shear strain are defined as

ǫxy = (
∂ux

∂y
+

∂uy

∂x
)/2 = ǫyx,

ǫyz = (
∂uy

∂z
+

∂uz

∂y
)/2 = ǫzy, (2.25)

ǫxz = (
∂ux

∂z
+

∂uz

∂x
)/2 = ǫzx.

(a) (b)

Figure 2.5: Illustration of (a) 1D linear strain and (b) 2D shear strain.

Figure 2.5 gives an illustration of 1D linear strain and 2D sheer strain. Using



www.manaraa.com

24

the above notation for linear strain and sheer strain, it is possible to express strain

as a symmetric strain tensor

ǫ =

















ǫx ǫxy ǫxz
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ǫzx ǫzy ǫz

















=
1

2

[

∇u + (∇u)T
]

(2.26)

where ∇u is the gradient of the displacement field

∇u =

















∂ux
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∂uz
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
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











. (2.27)

The strain tensor is a real symmetric matrix. Then by singular value decompo-

sition (SVD), the strain tensor can be represented as a set of orthogonal eigenvectors,

along which there is no shear, but only stretch or compression. The eigenvalues are

defined as principal strains, and the eigenvectors are called principal directions.

The ratio of the length in the direction of maximal extension over the length in

the direction of minimal extension is defined as anisotropic deformation index (ADI).

The ADI value is always larger or equal to 1. A big ADI value indicates an anisotropic

expansion, while a ADI values approximately 1 represents an isotropic expansion.

In this thesis work, the strain was calculated from P0 to P10 in sheep AS70078,

and compared with the corresponding Jacobian map in order to get more information

about the lung tissue expansion.
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2.6 Xenon CT Specific Ventilation Analysis

During the Xenon gas wash-in phase of image acquisition, the Xe-CT time

series data shows an exponential rise in lung density. In each ROI to be analyzed,

the mean density D(t) is modeled as in [21]

D(t) =















D0 0 ≤ t < t0

D0 + (Df − D0)(1 − e−
t−t0

τ ) t ≥ t0,

(2.28)

where D0 is the density in the ROI before switching to xenon gas, Df is the density

when xenon was inspired until equilibrium, t0 is the start time switching to xenon

from room air, and τ is the model time constant. Specific ventilation (sV, ventilation

per unit lung air volume in min−1) for each ROI was calculated as the inverse of the

time constant τ , i.e., sV = τ−1. A bigger sV value in a ROI indicates larger density

change in a time unit.

2.7 Comparison between Estimates

from Registration and sV

2.7.1 Comparison between Jacobian and sV

As air moves in the lung during inflation phase, it results in the lung tissue

expansion and density change. The specific ventilation (sV) calculated from Xe-CT

estimates the density change, and the Jacobian calculated from registration results

measures the local tissue deformation. The lung tissue which has large density change

should also have large deformation. Therefore, it is reasonable to expect a direct

relationship between these two measures.
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Figure 2.6 shows the comparison experiment scheme. There are two groups

of experiments. The first group of experiments used 5 sheep data. We compared sV

from Xe-CT at P0 with the measures from registration P0 to P5, P5 to P10, P10

to P15, P15 to P20, and P20 to P25, shown in Figure 2.6(a). The second group

of experiments used 4 sheep data. We compared sV from Xe-CT at P10 with the

measures from registration P10 to P15, P15 to P20, and P20 to P25, shown in

Figure 2.6(b).

(a) (b)

Figure 2.6: Illustration of the comparison experiment scheme from (a) P0 and (b)
P10.

The CT images cover the whole lung region, however, the Xe-CT images only

cover limited range along z-dimension. In order to compare the Jacobian from reg-

istration results of CT images and the sV from Xe-CT analysis, a rigid registration
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is needed to register the Xe-CT slices to a 3D rectangular region in the the starting

CT image. In the rectangular region, a filtering process was performed and only the

regions that contain between 40% and 90% air were left over for later calculation.

(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Method of Jacobian analysis in the comparison experiment. (a) P0 image
shows the initial rectangular regions of interest. Subsequent images show how each
region deforms as the lung expands. (b) P5 image; (c) P10 image; (d) P15 image;
(e) P20 image; (f) P25 image. These pictures are generated from sheep AS70080.

Within the 3D rectangular region, 30 to 39 slabs were defined which spaced



www.manaraa.com

28

along y (ventral to dorsal) direction equally. Each slab is 4 mm thick. This spatial

encoding is shown in Figure 2.7(a). In order to compare the measurement from CT

image registration with sV from Xe-CT acquired at P0, the starting CT image to

perform spatial encoding was chosen at P0. The deformation of each slab can be

tracked across the P5, P10, P15, P20, and P25 images using the displacement fields

resulted from registration. This process is shown in Figure 2.7(b)-(f).

Using Xe-CT images at P10, the second set of comparison experiments were

made in the similar way. The region extraction and spatial encoding process is the

same as described above. Instead of defining slabs on P0 CT image, the spatial

encoding was performed on P10 CT image. And the coverage of each slab can be

tracked across P15, P20, and P25.

Within each slab, the average measures of Jacobian and sV were calculated

and plotted. Then the comparison between Jacobian and sV was made by fitting a

linear regression line to the scatter plot. The correlation coefficients r from the linear

regression of average Jacobian and average sV was calculated and used to measure

how close one estimate is related to the other one [20].

2.7.2 Comparison between Intensity-based

Regional Volume Change and sV

The lung region which has increased volume during respiratory cycle should

have decreased mean graylevel due to increased air content. In each slab defined in

2.7.1, the average CT HU was calculated across different pressures. Applying equation

2.23 on each slab, the regional volume change was measured and compared with the
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average sV. The correlation coefficients between the two estimates were calculated by

linear regression as described above.
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CHAPTER 3

RESULTS

3.1 Visualization of Image Registration Results

Registration of one image pair using the Small Deformation Inverse Consistent

Linear Elastic (SICLE) algorithm [6, 16] took an average of 40 to 50 minutes on a

workstation with dual Intel Xeon 2.33GHz processors and 16 GB of RAM.

An example of registration results is shown in Figure 3.1. Figure 3.1(a) and

(b) show coronal slices at P0 and P10 pressure for sheep AS70080 respectively. The

deformed slice from P0 image to P10 image is shown in Figure 3.1(c). Figure 3.1(d)

and (e) show the absolute intensity difference between the template slice and the

target slice before registration, and the difference between the deformed template

slice and the corresponding target slice after registration. The bright region around

the base of lung found in the difference image before registration are significantly

reduced after registration, which indicates a successful registration. However, since

the air content are different in P0 and P10 images, the resulted deformed image from

P0 has different intensity scale with P10 image, as shown in Figure 3.1(b) and (c).

As a result, the difference between deformed image and target image can never be

zero.

The displacement fields estimated in registration process were used in later

analysis. Figure 3.2 shows a 2D displacement field for sheep AS70078 from P0 to

P10 on a coronal slice.
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(a) (b) (c)

(d) (e)

Figure 3.1: Registration example of AS70080. (a) A slice of P0 image; (b) a slice
of P10 image; (c) a slice of deformed image from P0 to P10 which matches (b); (d)
difference between (a) and (b); and (e) difference between (c) and (b).

Figure 3.2: 2D displacement field from P0 to P10 for sheep AS70078 shown on a
coronal slice. The red vectors represent larger displacement.
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3.2 Assessment of Image Registration Accuracy

3.2.1 Landmark Error

The landmarks were chosen as recognizable airway branchpoints located in the

central region of lung, as shown in Figure 3.3 and Figure 3.4.

The registration accuracy measured by predicting landmarks motion across

five 5 cm H2O pressure change pairs P0-P5, P5-P10, P10-P15, P15-P20, and P20-

P25 for five sheep is shown in Figure 3.5(a). Figure 3.5(b) shows their mean landmark

error averaged on five sheep. These data are shown in Table A.1.

Figure 3.5 shows that the average landmark errors for 5 cm H2O pressure

change pairs are small (within 1.5 mm) except one outlier sheep AS60150. This

sheep shows large landmark error when transforming images from P0 to P5. By

further inspection of this sheep, atelectasis in the most dorsal lung region was noticed

in P0 image, shown as the ROI in red rectangle in Figure 3.6(a). However, this fluid

region appears normal in the images at P5 and higher pressure images, shown in

Figure 3.6(b).

The registration is based on intensity matching, thus the lower contrast caused

by atelectasis resulted in the larger landmark errors from P0 to P5. However, starting

from P5 image, since more air goes into the airway, the intensity contrast is increasing

and thus results in more accurate registration. This is a general phenomenon shown in

Figure 3.5(b). As the contrast increased at higher pressure images, the registrations

are tend to be more accurate and results in smaller landmark errors.

The registration accuracy measured by predicting landmarks motion across in-
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Figure 3.3: Landmark positions on the airway tree segmented out from sheep AS60133
at 0 cm H2O airway pressure.

(a) (b)

Figure 3.4: Projection of landmark positions onto (a) a coronal slice and (b) a sagittal
slice for sheep AS70078 at 25 cm H2O airway pressure.
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Figure 3.5: Registration accuracy for the 5 cm H2O pressure change pairs. (a) Mean
landmark errors for each animal for each pressure change pair. (b) Mean landmark
errors for each pressure change pair averaged across all five sheep.
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(a) (b)

Figure 3.6: Atelectasis in sheep AS60150. (a) The atelectasis in the most dorsal lung
region in P0 image. (b) The approximately same anatomic slice as (a) in P5 image.
Notice that the fluid region (ROI in red rectangle) appears normal in P5 image.

creasing pressure change pairs P0-P5, P0-P10, P0-P15, P0-P20, and P0-P25 start-

ing from P0 for five sheep is shown in Figure 3.7(a). Figure 3.7(b) shows their mean

landmark error averaged on five sheep. These data are shown in Table A.2.

The registration accuracy measured by predicting landmarks motion across

increasing pressure change pairs P10-P15, P10-P20, and P10-P25 starting from P10

for five sheep is shown in Figure 3.8(a). Figure 3.8(b) shows their mean landmark

error averaged on five sheep. These data are shown in Table A.3.

When the pressure change is increasing between images, the landmark error

is also increasing, as shown in Figure 3.7 and Figure 3.8. This is caused by larger

anatomic deformations between images in larger pressure change pair. The outlier

sheep AS60150 showing much higher errors in Figure 3.7 is again caused by the low

contrast in the P0 image. This is further confirmed in Figure 3.8 where the landmark
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Figure 3.7: Registration accuracy for increasing pressure change pairs starting from
P0. (a) Mean landmark errors for each animal for each pressure change pair. (b)
Mean landmark errors for each pressure change pair averaged across all five sheep.
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Figure 3.8: Registration accuracy for increasing pressure change pairs starting from
P10. (a) Mean landmark errors for each animal for each pressure change pair. (b)
Mean landmark errors for each pressure change pair averaged across all five sheep.
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error was calculated for increasing pressure change pairs starting from P10. In this

case, all five sheep have less than 3.4 mm landmark error for the largest pressure

change pair P10 to P25.

Note that the scale of average landmark error are different in Figure 3.7 and

Figure 3.8. For the same pressure difference between images starting at P0 and P10,

for example, P0 to P15 and P10 to P25, the average error over all five sheep from

P10 to P25 (2 mm) is much lower than that from P0 to P15 (7 mm). This also proves

that registration starting from higher pressure images is tend to be more accurate due

to the decreased expansion magnitude and the improved contrast since the airway is

opened up at higher pressure.

The registration process is sensitive to the magnitude of the tissue expansion.

From Figure 3.7 we can see that when the pressure change is 10 cm H2O, the average

landmark error is around 2 mm excluding the sheep with atelectasis. However, when

the pressure change is larger than 10 cm H2O, the landmark error for some sheep

increases dramatically. Also, by visualization of the registration results, we also found

that the deformed images did not match well with the target images when pressure

change exceeds 10 cm H2O. Thus, The optimal sampling points during respiratory

cycle for CT imaging is around 10 cm H2O, which can lower the cost and radiation

while guarantee the registration accuracy is acceptable.

3.2.2 Transitivity Error

For the two groups of transformations P0 to P5, P5 to P10, P10 to P0 and

P10 to P15, P15 to P20, P20 to P25, P25 to P0, the average transitivity error over
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Table 3.1: Transitivity error (mm)

Sheep P0 → P5 → P10 → P0 P10 → P15 → P20 → P25 → P10
AS60133 0.94 0.88
AS60150 3.29 2.04
AS70077 1.81 0.84
AS70078 0.93 1.60
AS70079 3.11 1.18
AS70080 0.34 0.52

mean error 1.74 1.18

the lung region for all six sheep is shown in the Table 3.1. The last row in the Table

shows the average transitivity error for each group over six sheep.

From table 3.1, we notice that the average transitivity errors for both trans-

formation groups are less than 2 mm, which is acceptable considering the large de-

formation resulted from the concatenation of those transformations. Note that the

average transitivity error from P10 → P15 → P20 → P25 → P10 (1.18 mm) is even

lower than that from P0 → P5 → P10 → P0 (1.74 mm). This is caused by the larger

deformation between lower pressure images and again the contrast improvement in

higher pressure images. The big transitivity errors (more than 2mm ) in AS60150

and AS70079 are resulted from the larger intensity difference (comparing with other

sheep) in the dorsal lung region across different pressures. Since mean squared inten-

sity difference is the similarity metric for our registration algorithm, large intensity

difference will increase the difficulties of registration.
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3.3 Assessment of Jacobian and Strain

After registration, Jacobian and strain measures were calculated based on the

resulting displacement fields.

From the Jacobian map of transformations, we can estimate the local specific

volume change for each pressure change pair. Figure 3.9 (a)-(e) show the local lung

tissue specific volume change of a transverse section from sheep AS70078 across all

five pressure change pairs. The resulting volume change map has few negative values.

Figure 3.9 (f) shows the pressure change pair for each voxel when it experienced the

largest expansion during the inflation phase.

From Figure 3.9 we noticed that lung tissue expands little from P15 to P20

and from P20 to P25. The first three pressure changes dominate the lung expansion.

In addition, Figure 3.9 (f) shows that for this section, the superior half has most

expansion from P0 to P5 while the inferior half has most expansion from P10 to

P15.

Figure 3.10 shows the maps of Jacobian, maximal principal strain and aniso-

tropic deformation index (ADI) on one transverse slice. Comparison between Jacobian

and maximal principal strain together with the ADI map can reflect more lung tissue

deformation information. For the ROI in black square which is near the aorta in the

left lung, the Jacobian is big where the maximal principal strain is relatively small.

This illustrates that this region experienced an isotropic expansion, shown as red in

the ADI map (small ADI value approximately 1). For the ROI in red rectangle which

is near the heart, the Jacobian is relatively small while its maximal principal strain
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Local lung tissue specific volume change of a transverse section in (a) P0
to P5, (b) P5 to P10, (c) P10 to P15, (d) P15 to P20, and (e) P20 to P25 pressure
change pairs for sheep AS70078. (f) shows the pressure change pair for each voxel
when it experienced the largest expansion.
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is large. This illustrates that region experienced an anisotropic expansion, shown

as purple in the ADI map (larger ADI value approximately 2). This anisotropic

expansion may be caused by the presence of the heart.

(a) (b) (c)

Figure 3.10: Lung expansion measures resulted from registration. (a) Jacobian, (b)
maximal principal strain, and (c) anisotropic deformation index on a transverse slice
when lung expanded from P0 to P10 for sheep AS70078.

After applying strain tensor on the transformation, the directions along which

there is only linear strain (stretch or compression) for local lung tissue were also

estimated using SVD analysis. Figure 3.11 illustrates the maximal principal direction,

maximal principal strain, and Jacobian together on a transverse slice and a coronal

slice. It enable us to get more details of the lung tissue expansion instead of just

knowing the expansion ratio from Jacobian.
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(a) (b)

Figure 3.11: Maximal principal direction of P0 to P10 transformation on (a) a trans-
verse slice and (b) a coronal slice for sheep AS70078. The vector magnitude represents
the maximal principal strain, and the colored contour expresses the Jacobian.

3.4 Comparison Experiments

From the registration results and Xe-CT analysis, Jacobian, intensity-based

volume change and specific ventilation were calculated. Color-coded maps of the

three parameters at approximately the same anatomic location for sheep AS70078

are shown in Figure 3.12. From the three maps, a relationship between the three

measurements can be observed. There are similar ventral-dorsal gradients in these

maps, which is consistent with known physiology that the more dependent region

of lung has more ventilation. The sheep is at the supine position, then the more

dependent region of lung is the dorsal region since it is closest to the direction of the

force of gravity. Thus, there are more ventilation and expansion in the dorsal region.
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(a) (b)

(c)

Figure 3.12: Color-coded maps showing (a) Jacobian of the registration transforma-
tion, (b) intensity-based volume change computed from the P10 − P15 image pair,
and (c) specific ventilation (1/min) for approximately the same anatomic slice com-
puted from Xe-CT at P10 of sheep AS70078. Note that the physical units and color
scales are different for three images.



www.manaraa.com

45

For five sheep, the average sV from Xe-CT at P0, and the average Jacobian

and intensity-based regional volume change for all five 5 cm H2O pressure change

pairs vs. lung height were calculated and shown in Appendix C. These data for

sheep AS70078 is shown in Figure 3.13 here. It shows the ventral-dorsal gradients in

the measures of average sV, Jacobian, and intensity-based regional volume change. In

addition, Figure 3.13(b)-(c) show that the lung at lower pressures has more expansion

on average, which also compares well with known physiology. From Figure 3.13(b)-

(c), we noticed there is a jump in P10 to P15 curve at the dorsal region. This

corresponds to the pattern shown in Figure 3.9 that dorsal region experiences large

expansion from P10 to P15. It implies that for sheep AS70078, 10 cm H2O is a

critical pressure for the airway in dorsal region to open up.
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Figure 3.13: Example of sV, Jacobian and intensity-based regional volume change
measurements vs. lung height for sheep AS70078. (a) Average ± standard deviation
of sV vs. lung height; (b) average Jacobian for all pressure pairs vs. lung height; and
(c) intensity-based regional volume change for all pressure pairs vs. lung height.
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Figure 3.13 continued.

From Figure 3.13, it is reasonable to make a guess that there exists a linear

relationship between sV and other two measures derived from registration. Take the

Jacobian and sV as an example, in order to compare the two estimates, an average

Jacobian vs. average sV scatter plot was made and a linear regression line was used

to fit on the scatter data. Figure 3.14 shows the average Jacobian of P5 to P10
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transformation vs. average sV at P0 in sheep AS70078. The intensity-based regional

volume change was compared with sV in the same way.

y = 0.047x + 0.9736
R2 = 0.8921
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Figure 3.14: Scatter plots of average Jacobian over average sV for the P5 to P10
transformation for sheep AS70078. Linear regression line and the squared correlation
coefficients are shown in the chart.

For five sheep, the correlation coefficients r were calculated from the linear

regression of the measures resulted from registration and sV obtained at P0 for each

5 cm H2O pressure change pair. The correlation coefficients for each comparison,

each pressure change pair and each sheep are shown in Figure 3.15. These data and

average correlation coefficient for each pressure change pair over five sheep are shown

in Table B.1 and Table B.2.

Xe-CT images at P10 are available for four sheep. Thus, the correlation of the

average Jacobian, the intensity-based regional volume change for P10 to P15, P15 to

P20, P20 to P25 image pairs with the average sV from Xe-CT at P10 were evaluated
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Figure 3.15: Correlation coefficients r from the linear regression of (a) Jacobian and
sV at P0, and (b) intensity-based regional volume change and sV at P0 for each 5
cm H2O pressure change pair starting from P0 and for five sheep.
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respectively using the same method described above. The correlation coefficients for

each comparison, each pressure change pair and each sheep are shown in Figure 3.16.

These data and average correlation coefficient for each pressure change pair over four

sheep are shown in Table B.3 and Table B.4.

Figure 3.15 and Figure 3.16 show there is a reasonably strong linear rela-

tionship between sV analysis from Xe-CT studies and the regional expansion from

registrations of CT images over a wide range of pressures. For analysis starting from

P0, the correlations for image pairs P5 to P10 and P10 to P15 are stably higher

(around 0.87) than other pairs across five sheep and across two comparison experi-

ments. For analysis starting from P10, correlations for all image pairs are stably high

(larger than 0.84) for three sheep of four.

The outlier sheep AS70080 has extremely low correlation coefficient from P0

to P5 in Figure 3.15 and relatively lower correlation coefficient in P10 to P15 and

P15 to P20 pairs in Figure 3.16. Further inspection revealed that this sheep also had

severe atelectasis in the dorsal region across all six pressures. This fluid region in P10

image is shown in Figure 3.17.

However, AS70080 has very small landmark error. The reason is that those

selected landmarks are distributed in the central region of lung, and no landmark is

located in the fluid region. The transitivity errors for AS70080 are also small since

the atelectasis exists in all six images of increasing pressures. In order to check the

the registration accuracy in the dorsal region when atelectasis exists, it is necessary

to have widely distributed landmarks and other evaluation methods.
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Figure 3.16: Correlation coefficients r from the linear regression of (a) Jacobian and
sV at P10, and (b) intensity-based regional volume change and sV at P10 for each 5
cm H2O pressure change pair starting from P10 and for four sheep.
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Figure 3.17: Atelectasis in sheep AS70080 in P10 image.

3.5 Experiment using MI Registration

Registrations were done on P10 to P15, P15 to P20 and P20 to P25 pairs

using a mutual information (MI) similarity cost function based SICLE algorithm. MI

registration runs 5 to 10 minutes longer than MSQ registration. Figure 3.18 illustrates

the joint histograms of the image pairs before and after MI registration. Notice that

the spread of the joint histogram is much less after registration.
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(a) (b)

Figure 3.18: Joint histogram of (a) P10 and P15 before registration, and (b) deformed
P10 and P15 after registration for sheep AS70079.

The registration accuracy measured by predicting landmarks motion across

three 5 cm H2O pressure change pairs for five sheep is shown in Figure 3.19(a).

Figure 3.19(b) shows their mean landmark error averaged on five sheep. These data

are shown in Table A.4. The landmark errors are within 1 mm, which are acceptable

since those errors are in the sub-voxel level.

The comparison between Jacobian, intensity-based regional volume change es-

timated from the resulting displacement fields with sV from Xe-CT at P10 were also

analyzed for four sheep which have P10 Xe-CT data. The correlation coefficients for

each comparison and each sheep at P10 to P15, P15 to P20 and P20 to P25 pressure

change pairs are shown in Figure 3.20. These data and average correlation coefficient

for each pressure change pair over four sheep are shown in Table B.5 and Table B.6.

These correlation coefficients are quite similar with those generated from registra-
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Figure 3.19: MI registration accuracy for three 5 cm H2O pressure change pairs.
(a) Mean landmark errors for each animal for each pressure change pair. (b) Mean
landmark errors for each pressure change pair averaged across all five sheep.
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Figure 3.20: Correlation coefficients r from the linear regression of (a) Jacobian and
sV at P10 (b) intensity-based regional volume change and sV at P10 for each 5 cm
H2O pressure change pair starting from P10 and for four sheep. The Jacobian and
intensity-based regional volume change are estimated from mutual information driven
registration.
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tion driven by minimizing mean squared intensity difference. This proves that the

grayscale mapping to emphasize the tissue-vessel and tissue-chest wall boundaries is

useful for later registration, and the intensity difference based registration is effective

in this application.
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CHAPTER 4

DISCUSSION

In this project, most of the work is based on registration. Thus, the regis-

tration accuracy evaluation is necessary and important. Tracking landmark errors

and transitivity errors are two ways to evaluate the accuracy, but they are far from

enough. Further investigation of the registration accuracy is needed, such as tracking

known displacements in a phantom, assessment of anatomic overlap, and comparison

with known synthetic deformations. One existing problem is that the lung tissues near

large vessels should have large deformation physiologically, however, this phenomenon

does not show in the Jacobian map. This may be caused by the smooth constraint on

displacement fields during the registration process. Whether this smooth constraint

is suitable for the lung deformation is still unknown and need to be further investi-

gated. In addition, the registration tends to be inaccurate near regions of lung where

the airways open up at higher pressures. Developing a robust registration scheme to

deal with such case is also necessary in order to be applied on the patients who has

atelectasis or edema.

Currently, mutual information registration algorithm is optimized using gra-

dient descent. However, this optimization method can get stuck in local minima with

a mutual information cost function. In the future, we will need to investigate using

other optimization methods.

For all the comparison experiments, sV were used to compare with measures
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estimated from CT image pair with 5 cm H2O pressure change. We can compare

sV with registration results from larger step pressure change pairs and evaluate the

correlation in order to find the image pair which correlates sV best (stably higher

than others).

We are currently estimating the lung expansion in the supine position. It is

interesting to investigate the lung contraction in the exhalation process. Lung motion

in the prone position also need to be analyzed.

This work can be extended to the treatment of lobar anatomy by segmenting

the lobes of the lung and registering them separately. This will help accommodate

the lobar slippage and rotations that are observed.
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CHAPTER 5

CONCLUSION

This thesis work has illustrated a registration-based technique for estimating

local lung tissue expansion during respiratory cycle from multiple respiratory-gated

CT images. The degree of expansion is estimated using Jacobian and ventilation

theory, while the stretching direction and magnitude are revealed using strain tensor.

There measures are all generated from the displacement fields estimated in registra-

tion process.

The registration accuracy was evaluated by tracking landmarks motion and

computing transitivity error. The average landmark errors are within 1.5 mm except

an outlier at the lowest pressure change pair. The average transitivity errors are

within 1.8 mm.

The Jacobian, ventilation and sV maps all show the ventral-dorsal gradient.

The comparison between the measures of regional lung expansion estimated by reg-

istration and the regional ventilation from Xe-CT analysis shows strong correlation.

This comparison result gives confidence that image registration can track the lung

motions and be used to build the lung expansion model.

Registration starting from images higher than 10 cm H2O pressure can results

more accurate transformations, and more stable correlations between the measures

from registration and sV estimated from Xe-CT image at P10.

The ventilation analysis based on Xe-CT imaging is only available to a small
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number of research groups due to its high imaging cost, limited spatial coverage

and limited spatial resolution. Comparing with Xe-CT analysis, the registration-

based specific volume change and strain analysis of lung expansion can provide high-

resolution map and directional information for the entire lung using just two vol-

umetric images acquired at different lung volumes. Therefore, using the technique

described in this thesis work, we are able to get a more detailed and more complete

assessment of lung tissue expansion at lower cost.
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APPENDIX A

LANDMARK ERROR

Table A.1: Landmark error for 5 cm H2O pressure change pairs (mm)

Sheep P0 → P5 P5 → P10 P10 → P15 P15 → P20 P20 → P25
AS60133 0.98 1.09 0.85 0.59 0.79
AS60150 4.01 1.46 0.46 0.52 0.51
AS70078 0.65 1.00 1.14 0.73 0.57
AS70079 0.79 0.70 0.87 0.54 0.55
AS70080 0.55 0.56 0.48 0.49 0.52

Ave. error 1.40 0.96 0.76 0.57 0.59

Table A.2: Landmark error for increasing pressure change pairs from P0 (mm)

Sheep P0 → P5 P0 → P10 P0 → P15 P0 → P20 P0 → P25
AS60133 0.98 1.53 2.83 4.37 6.58
AS60150 4.01 11.78 16.69 22.73 26.86
AS70078 0.65 1.48 6.59 8.86 11.45
AS70079 0.79 4.76 8.34 11.27 14.14
AS70080 0.55 0.80 0.98 1.14 1.55

Ave. error 1.40 4.07 7.09 9.67 12.12
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Table A.3: Landmark error for increasing pressure change pairs from P10 (mm)

Sheep P10 → P15 P10 → P20 P10 → P25
AS60133 0.85 0.97 1.34
AS60150 0.46 1.54 3.38
AS70078 1.14 2.13 3.31
AS70079 0.87 0.92 1.34
AS70080 0.48 0.76 1.04

Ave. error 0.76 1.27 2.08

Table A.4: MI registration resulting landmark error for 5 cm H2O pressure change
pairs from P10 (mm)

Sheep P10 → P15 P15 → P20 P20 → P25
AS60133 0.86 0.61 0.81
AS60150 0.57 0.63 0.58
AS70078 0.91 0.71 0.58
AS70079 0.84 0.55 0.56
AS70080 0.49 0.48 0.50

Ave. error 0.73 0.60 0.61
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APPENDIX B

CORRELATION COEFFICIENTS

Table B.1: Correlation coefficients (CC) of Jacobian with sV at P0

Sheep P0 → P5 P5 → P10 P10 → P15 P15 → P20 P20 → P25
AS60133 0.74 0.89 0.88 0.77 0.55
AS60150 0.80 0.88 0.91 0.86 0.79
AS70078 0.87 0.94 0.82 0.91 0.81
AS70079 0.78 0.91 0.89 0.85 0.85
AS70080 0.07 0.71 0.81 0.87 0.56
Ave. CC 0.65 0.87 0.86 0.85 0.71

Table B.2: Correlation coefficients (CC) of intensity-based regional volume change
with sV at P0

Sheep P0 → P5 P5 → P10 P10 → P15 P15 → P20 P20 → P25
AS60133 0.81 0.85 0.86 0.72 0.65
AS60150 0.89 0.93 0.94 0.64 0.88
AS70078 0.95 0.91 0.94 0.91 0.65
AS70079 0.91 0.89 0.85 0.85 0.78
AS70080 0.38 0.74 0.76 0.68 0.47
Ave. CC 0.79 0.87 0.87 0.76 0.69
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Table B.3: Correlation coefficients (CC) of Jacobian with sV at P10

Sheep P10 → P15 P15 → P20 P20 → P25
AS70077 0.87 0.91 0.88
AS70078 0.95 0.97 0.96
AS70079 0.84 0.96 0.97
AS70080 0.55 0.64 0.87
Ave. CC 0.80 0.87 0.92

Table B.4: Correlation coefficients (CC) of intensity-based regional volume change
with sV at P10

Sheep P10 → P15 P15 → P20 P20 → P25
AS70077 0.88 0.89 0.84
AS70078 0.93 0.96 0.88
AS70079 0.93 0.98 0.94
AS70080 0.71 0.67 0.87
Ave. CC 0.86 0.87 0.88

Table B.5: MI registration resulted correlation coefficients (CC) of Jacobian with sV
at P10

Sheep P10 → P15 P15 → P20 P20 → P25
AS70077 0.88 0.78 0.84
AS70078 0.94 0.93 0.86
AS70079 0.77 0.88 0.90
AS70080 0.51 0.68 0.81
Ave. CC 0.77 0.82 0.85

Table B.6: MI registration resulted correlation coefficients (CC) of intensity-based
regional volume change with sV at P10

Sheep P10 → P15 P15 → P20 P20 → P25
AS70077 0.85 0.86 0.83
AS70078 0.97 0.96 0.87
AS70079 0.94 0.98 0.93
AS70080 0.65 0.70 0.81
Ave. CC 0.85 0.87 0.86



www.manaraa.com

64

APPENDIX C

FIGURES OF ESTIMATES VS. LUNG HEIGHT

C.1 Sheep AS60133
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(a)

Figure C.1: The sV, Jacobian and intensity-based regional volume change measure-
ments vs. lung height for sheep AS60133. (a) Average ± standard deviation of sV
analyzed from Xe-CT at P0 vs. lung height; (b) average Jacobian for all 5 cm pressure
change pairs vs. lung height; and (c) intensity-based regional volume change for all 5
cm pressure change pairs vs. lung height.
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Figure C.1 continued.
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C.2 Sheep AS60150
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Figure C.2: The sV, Jacobian and intensity-based regional volume change measure-
ments vs. lung height for sheep AS60150. (a) Average ± standard deviation of sV
analyzed from Xe-CT at P0 vs. lung height; (b) average Jacobian for all 5 cm pressure
change pairs vs. lung height; and (c) intensity-based regional volume change for all 5
cm pressure change pairs vs. lung height.
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Figure C.2 continued.
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C.3 Sheep AS70078
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(a)

Figure C.3: The sV, Jacobian and intensity-based regional volume change measure-
ments vs. lung height for sheep AS70078. (a) Average ± standard deviation of sV
analyzed from Xe-CT at P0 vs. lung height; (b) average Jacobian for all 5 cm pressure
change pairs vs. lung height; and (c) intensity-based regional volume change for all 5
cm pressure change pairs vs. lung height.
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Figure C.3 continued.
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C.4 Sheep AS70079
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(a)

Figure C.4: The sV, Jacobian and intensity-based regional volume change measure-
ments vs. lung height for sheep AS70079. (a) Average ± standard deviation of sV
analyzed from Xe-CT at P0 vs. lung height; (b) average Jacobian for all 5 cm pressure
change pairs vs. lung height; and (c) intensity-based regional volume change for all 5
cm pressure change pairs vs. lung height.
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Figure C.4 continued.
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C.5 Sheep AS70080
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Figure C.5: The sV, Jacobian and intensity-based regional volume change measure-
ments vs. lung height for sheep AS70080. (a) Average ± standard deviation of sV
analyzed from Xe-CT at P0 vs. lung height; (b) average Jacobian for all 5 cm pressure
change pairs vs. lung height; and (c) intensity-based regional volume change for all 5
cm pressure change pairs vs. lung height.
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Figure C.5 continued.
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